Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique: 4cm). On note A, B et C les points d'affixes respectives 2i, -1 et i. On considère l'application f qui, à tout point M diffèrent de A et d'affixe z, associe le point M' d'affixe z' tel

que
$$z' = \frac{z+1}{z-2i}$$

- 1.a. Faire une figure que l'on complétera au cours de l'exercice.
- b. Déterminer l'affixe du point C', image de C par f. Quelle est la nature du quadrilatère ACBC'?
- c. Montrer que le point C admet un unique antécédent par f, que l'on appellera C". Quelle est la nature du triangle BCC"?
- 2. Donner une interprétation géométrique du module et d'un argument de z' (lorsque celui-ci existe).
- 3. Déterminer en utilisant la question précédente, les ensembles suivants :
- a. l'ensemble E_0 des point M dont les images par f ont pour affixe un nombre réel strictement négatif;
- b. l'ensemble E_1 des point M dont les images par f ont pour affixe un nombre imaginaire pur non nul;
- c. l'ensemble E₂ des points M dont les images appartiennent au cercle de centre O et de rayon 1.

CORRECTION

1. b. Le point C', image de C par f a pour affixe c' =
$$\frac{c+1}{c-2i} = \frac{i+1}{i-2i} = \frac{i+1}{-i} = i(1+i) = -1+i$$

 \overrightarrow{AC} a pour affixe -i; $\overrightarrow{C'B}$ a pour affixe -1-(-1+i)=-i donc $\overrightarrow{AC}=\overrightarrow{C'B}$ donc le quadrilatère ACBC' est un parallélogramme.

c. C" est l'antécédent de
$$c$$
 si et seulement si son affixe c " vérifie : $\frac{c"+1}{c"-2i} = i$ soit $c"+1=i$ ($c"-2i$) $\Leftrightarrow c"+1=i$ $c"+2$

c''(1-i) = 2-1 soit $c'' = \frac{1}{1-i} = \frac{1}{2}(1+i)$ donc le point C admet un unique antécédent par f.

$$BC^2 = |c - b|^2 = |1 + i|^2 = 2$$

$$CC''^2 = |c'' - c|^2 = \left|\frac{1}{2} + \frac{1}{2}i - i\right|^2 = \left|\frac{1}{2} - \frac{1}{2}i\right|^2 = \frac{1}{2}$$

BC"
$$^{2} = |c" - b|^{2} = \left|\frac{1}{2} + \frac{1}{2}i + 1\right|^{2} = \left|\frac{3}{2} + \frac{1}{2}i\right|^{2} = \frac{5}{2} \text{ donc BC" }^{2} = \text{CC" }^{2} + \text{BC}^{2}$$

Le triangle BCC" est rectangle en C

2.
$$\operatorname{si} z \neq 2 \text{ i, } |z'| = \left| \frac{z - z_{\text{B}}}{z - z_{\text{A}}} \right| = \left| \frac{z - z_{\text{B}}}{|z - z_{\text{A}}|} \right| = \frac{\text{MB}}{\text{MA}}$$

si
$$z \neq -1$$
 alors $z' \neq 0$ et $\arg(z') = \arg\left(\frac{z - z_B}{z - z_A}\right)$ donc $\arg(z') = (\overrightarrow{MA}, \overrightarrow{MB}) + 2k\pi$ avec $k \in \mathbb{Z}$.

3. a. z' est un réel strictement négatif \Leftrightarrow arg(z') = π + 2 k π

$$\Leftrightarrow$$
 M \neq A et M \neq B et $(\overrightarrow{MA}, \overrightarrow{MB}) = \pi + 2 k \pi$

 \Leftrightarrow M \neq A et M \neq B et les vecteurs \overline{MA} , \overline{MB} sont colinéaires de sens opposés

⇔ M décrit le segment [AB] privé de A et B

$$E_0 = [AB] - \{A; B\}$$

b. z' est un nombre imaginaire pur non nul

$$\Leftrightarrow \arg(z') = \frac{\pi}{2} + k \,\pi$$

$$\Leftrightarrow$$
 M \neq A et M \neq B et $(\overrightarrow{MA}, \overrightarrow{MB}) = \frac{\pi}{2} + k \pi$

- \Leftrightarrow M \neq A et M \neq B et les vecteurs \overrightarrow{MA} , \overrightarrow{MB} sont orthogonaux
- \Leftrightarrow M \neq A et M \neq B et le triangle MAB est rectangle en M
- ⇔ M décrit le cercle de diamètre [AB] privé de A et B.

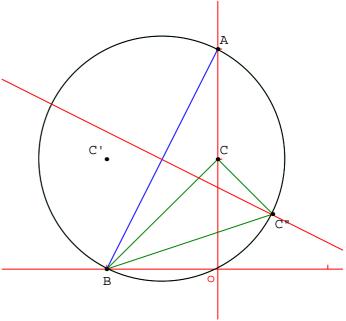
E₁ est le cercle de diamètre [AB] privé de A et B.

c. M' appartient au cercle de centre O et de rayon 1

$$\Leftrightarrow$$
 OM' = 1 \Leftrightarrow | z' | = 1 \Leftrightarrow $\frac{MB}{MA}$ = 1 et M \neq A

 \Leftrightarrow MB = MA et M \neq A \Leftrightarrow M décrit la médiatrice de [AB]

E₂ est la médiatrice de [AB]



Il faudrait sur la figure exclure les points A et B.