Dans le plan complexe muni du repère (O; \vec{u} , \vec{v}), on donne $z_0 = e^{i\frac{2\pi}{5}}$. On pose $\alpha = z_0 + z_0^4$ et $\beta = z_0^2 + z_0^3$.

- 1. Démontrer que α et β sont solution de l'équation $z^2 + z 1 = 0$
- 2. Exprimer α en fonction de $\cos \frac{2\pi}{5}$ puis en déduire sa valeur.
- 3. On appelle A_k le point d'affixe z_0^k avec $k=0,\ldots,4$. Soit H le point d'intersection de la droite (A_k A₄) avec l'axe des abscisses. Montrer que OH = $\cos\frac{2\pi}{5}$.
- 4. Soit Ω (resp. Σ) le point d'affixe $\frac{1}{2}$ (resp. i). On note C le cercle de centre Ω passant par le point Σ .
- a. Calculer le rayon de cercle C
- b. Ce cercle coupe l'axe des abscisses en deux point M et N. On appelle M le point d'abscisse positive. Montrer que $OM = |\alpha|$ et $ON = |\beta|$.
- c. En déduire que le point H est le milieu du segment [OM].
- d. Construire à la règle et au compas le pentagone régulier A₀ A₁ A₂ A₃ A₄.

CORRECTION

1.
$$\alpha^2 = (z_0 + z_0^4)^2 = z_0^2 + 2z_0 z_0^4 + z_0^8 = z_0^2 + 2z_0^5 + z_0^8$$

 $z_0^8 = e^{i\frac{16\pi}{5}} \text{ or } \frac{16}{5} = 2 + \frac{6}{5} \text{ donc } e^{i\frac{16\pi}{5}} = e^{i\frac{6\pi}{5}} = z_0^3$
 $\alpha^2 + \alpha - 1 = z_0^2 + 2z_0^5 + z_0^3 + z_0 + z_0^4 - 1 = z_0 + z_0^2 + z_0^3 + z_0^4 + 2z_0^5 - 1$
 $z_0^5 = e^{i2\pi} = 1 \text{ donc } \alpha^2 + \alpha - 1 = 1 + z_0 + z_0^2 + z_0^3 + z_0^4$

si
$$q \ne 1$$
 alors $1 + q + q^2 + \dots + q^4 = \frac{1 - q^5}{1 - q}$ donc $1 + z_0 + z_0^2 + z_0^3 + z_0^4 = \frac{1 - z_0^5}{1 - z_0} = 0$ donc $\alpha^2 + \alpha - 1 = 0$

 α est solution de $z^2 + z - 1 = 0$

$$\beta^{2} = (z_{0}^{2} + z_{0}^{3})^{2} = z_{0}^{4} + 2 z_{0}^{2} z_{0}^{3} + z_{0}^{6} = z_{0}^{4} + 2 z_{0}^{5} + z_{0}^{6}$$

$$z_{0}^{5} = 1 \text{ donc } 2 z_{0}^{5} + z_{0}^{6} = 2 + z_{0}$$

$$\beta^{2} + \beta - 1 = 2 + z_{0} + z_{0}^{4} + z_{0}^{2} + z_{0}^{3} - 1 = 1 + z_{0} + z_{0}^{2} + z_{0}^{3} + z_{0}^{4} = 0 \text{ pour les mêmes raisons que précédemment donc } \beta^{2} + \beta - 1 = 0 \text{ et } \beta \text{ est solution de } z^{2} + z - 1 = 0$$

2.
$$z_0^4 = e^{i\frac{8\pi}{5}}$$
 or $\frac{8}{5} = 2 - \frac{2}{5}$ donc $e^{i\frac{8\pi}{5}} = e^{-i\frac{2\pi}{5}} = \overline{z_0}$ donc $\alpha = z_0 + \overline{z_0} = 2\cos\frac{2\pi}{5}$

 α est solution de $z^2 + z - 1 = 0$

$$\Delta = 5$$
 donc $z^2 + z - 1 = 0$ admet deux solutions $z_1 = \frac{-1 + \sqrt{5}}{2}$ et $z_2 = \frac{-1 - \sqrt{5}}{2}$

$$0<\frac{2\,\pi}{5}<\frac{\pi}{2}\ \text{donc cos}\ \frac{2\,\pi}{5}>0\ \text{donc }\alpha=\frac{-1+\sqrt{5}}{2}\ \text{ et donc }\beta\ \text{est la seconde solution }\beta=\frac{-1-\sqrt{5}}{2}\ .$$

3.
$$A_4$$
 a pour affixe $e^{i\frac{8\pi}{5}}$ ou encore $e^{-i\frac{2\pi}{5}}$

A₁ a pour affixe $e^{i\frac{2\pi}{5}}$ donc A₁ et A₄ ayant des affixes conjuguées sont symétriques par rapport à la droite (O; \vec{u})

La droite (A₁ A₄) a pour équation $x = \cos \frac{2\pi}{5}$ donc H point d'intersection de la droite (A₁ A₄) avec l'axe des abscisses a pour affixe $\cos \frac{2\pi}{5}$ et $\cos \frac{2\pi}{5} > 0$ donc OH = $\cos \frac{2\pi}{5}$.

4. a. C est le cercle de centre Ω passant par le point Σ donc le rayon de cercle C est $\Omega \Sigma = |\frac{1}{2} + i| = \frac{\sqrt{5}}{2}$

b.
$$\Omega M = \frac{\sqrt{5}}{2} \operatorname{donc} x_{M} + \frac{1}{2} = \frac{\sqrt{5}}{2} \operatorname{soit} x_{M} = \frac{-1 + \sqrt{5}}{2} = \alpha \operatorname{donc} OM = \alpha$$

$$\Omega N = \frac{\sqrt{5}}{2} \operatorname{donc} x_{N} + \frac{1}{2} = -\frac{\sqrt{5}}{2} \operatorname{soit} x_{N} = \frac{-1 - \sqrt{5}}{2} = \beta \operatorname{donc} ON = |\beta|.$$

c. M a pour affixe
$$\alpha$$
 donc $\overrightarrow{OM} = \alpha$ donc $\overrightarrow{OM} = 2 \cos \frac{2\pi}{5}$ soit $\overrightarrow{OM} = 2 \overrightarrow{OH}$ donc H est le milieu de [OM].

Pour construire à la règle et au compas le pentagone :

Construire les points Ω et Σ , puis le cercle de centre Ω passant par Σ (cercle bleu)

Ce cercle coupe l'axe des abscisses en deux points l'un M d'abscisse positive, l'autre N d'abscisse négative.

$$\left| e^{i\frac{2k\pi}{5}} \right| = 1$$
 donc tous les points A_k appartiennent au cercle de centre O de rayon 1.

Soit H le milieu de [OM], la perpendiculaire en H à l'axe des abscisses coupe le cercle de centre O de rayon 1 en deux points A_1 et A_4 .

Soit A₀ le point d'affixe 1

En reportant successivement les arcs de cercles $\widehat{A_0 A_1}$, on peut construire sur le cercle rouge , les points A_2 et A_3 puis le pentagone régulier $A_0 A_1 A_2 A_3 A_4$

