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A popular question in recreational mathematics is the following: If we drop
a spaghetti noodle and it breaks at two random places, what is the proba-
bility that we can form a triangle with the three resulting segments? See for
example [2, chap.1, sec.6], [3, p.6], [4, p.31], or [7, p.30-36]. This is an ele-
mentary problem in geometric probability. Clearly the length of the noodle
(or equivalently our choice of unit length) does not matter, so the problem
amounts to choosing two numbers at random from the interval (0, 1), say
a and b with a < b, and looking at the resulting intervals (0, a), (a, b), and
(b, 1). We will be able to form a triangle when the positive numbers a, b−a,
and 1− b satisfy the triangle inequality (i.e., when no interval is longer than
the combined lengths of the other two). Equivalently, this will be the case
when all three intervals have length less than 1/2. Therefore, a triangle can
be formed precisely when the following three inequalities hold: a < 1/2,
b − a < 1/2, and b > 1/2.

Figure 1 shows all possible outcomes 0 < a < b < 1, and the darker
shaded region consists of all “favorable” outcomes, when a triangle can be
formed. Comparing areas, we see that the probability of succeding in getting
a triangle is 1/4.

Figure 1.

In this note we solve the following generalization of the problem: If the
noodle breaks at n − 1 random places, what is the probability P (n) that
we can form an n-gon with the n resulting segments? Again, this can be
modeled by choosing n−1 numbers at random from (0, 1), say a0 = 0 < a1 <
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a2 < · · · < an−1 < 1 = an, and looking at the resulting intervals (ai−1, ai)
for i = 1, 2, . . . , n. Setting xi = ai − ai−1, we have an affine isomorphism
between the (n − 1)-tuples (a1, . . . , an−1) satisfying the foregoing string of
inequalities and the (n − 1)-dimensional set ∆n in R

n given by

∆n = {(x1, . . . , xn) : each xi > 0,

n∑

i=1

xi = 1}.

This is the set of “all possible outcomes.” The set of all “favorable” outcomes
is given by the following proposition. Consider the subset Υn of ∆n defined
by

Υn = {(x1, . . . , xn) ∈ ∆n : xi < 1/2 for i = 1, 2, . . . , n}.

Proposition 1. There exists an n-gon of perimeter 1 and side-lengths

x1, . . . , xn if and only if (x1, . . . , xn) lies in Υn.

Proof. Suppose that (x1, . . . , xn) /∈ Υn, say xk ≥ 1/2 for some k. Then∑
i6=k xi ≤ 1/2 and it is impossible to form an n-gon. Conversely, if the

length of the longest side (hence of all sides) is less than 1/2, then the sum
of the lengths of the other sides is larger than 1/2 and a little tweaking yields
an n-gon. �

We record as a simple consequence of Proposition 1:

Corollary 2 (Generalized Triangle Inequality). Let y1, . . . , yn be posi-

tive numbers. There exists an n-gon with side-lengths y1, . . . , yn if and only

if

yi ≤
∑

j 6=i

yj (i = 1, . . . , n).

We remark that we should expect P (n) → 1 as n → ∞ because, given any
ǫ > 0, the probability that the longest side will have length greater than or
equal to ǫ tends to zero as n tends to infinity.

It is clear that P (n) = µ(Υn)/µ(∆n), where µ is any (n− 1)-dimensional
Euclidean measure on the subsets of ∆n. One could use such a measure to
find P (n): after computing µ(∆n), one partitions ∆n into Υn and other
pieces, just as we do in the proof of Theorem 3. A similar computation
then yields µ(Υn). However, because of the geometry of the pieces of this
partition, there is no need at all for computations using any explicit measure.
Here is our main result:

Theorem 3. The probability P (n) is given by

P (n) = 1 −
n

2n−1
.

Note that this formula is consistent with our previous result for P (3) and
also with the remark that limn→∞ P (n) = 1.
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Proof. Let Di = {(x1, . . . , xn) ∈ ∆n : xi ≥ 1/2}. We can decompose ∆n as
the disjoint union

∆n = Υn ∪

n⋃

i=1

Di.

Thus Υn is obtained by slicing off each “corner” Di of the simplex ∆n at
the midpoint of each edge. But each Di is actually similar to ∆n by a
scaling factor of 1/2, so it has measure (1/2)n−1 times the measure of ∆n.
Therefore,

µ(Υn) = µ(∆n) − n(1/2)n−1µ(∆n) = [1 − n(1/2)n−1]µ(∆n),

and the theorem follows. �

Readers interested in geometric probability might want to see the books
[4] and [6]. Those interested in the random division of an interval can
consult the articles [1] and [5]. Finally, those interested in similar problems
can find some in [2, chap.1, sec.6], [3], and [7].
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