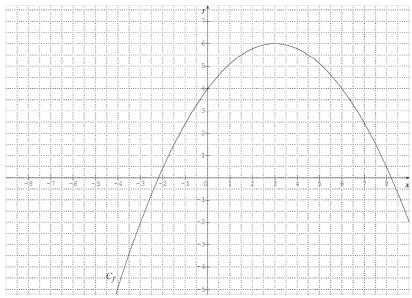
INTERPRETATION GRAPHIQUE

Ci-dessous la parabole représentant la fonction f définie sur $\mathbb R$



Soient les suites (U_n) et (V_n) : définies, pour tout entier naturel n, respectivement par : $U_n = f(n)$ et $\begin{cases} V_0 = a \\ V_{n+1} = f(V_n) \end{cases}$ où a est un réel.

- **18.** La tangente à la parabole au point d'abscisse 3 a pour équation :
- a. x=6

b. v = 6

c. y = 6x - 18

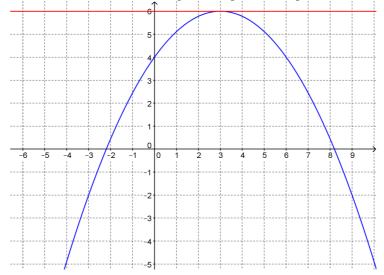
d.

aucune des trois propositions proposées ci-dessus n'est correcte

CORRECTION

Réponse b.

Le sommet de la parabole a pour coordonnées (3;6) donc la tangente à la parabole au point d'abscisse 3 a pour équation y = 6.



- 19. Sur \mathbb{R} , la dérivée de f est définie par f'(x) =
- a. $\frac{-4}{9}x \frac{4}{3}$

b. $\frac{-4}{9}x + \frac{4}{3}$

 $c. \frac{4}{9}x - \frac{4}{3}$

d. $\frac{4}{9}x + \frac{4}{3}$

CORRECTION

Réponse b.

Le sommet de la parabole a pour coordonnées (3 ; 6) donc f'(3) = 0 donc les bonnes réponses sont soit b, soit c.

_			(, , ,	
ĺ	х	$-\infty$	3	$+\infty$
	$f'(x) = \frac{-4}{9}x + \frac{4}{3}$	+	0	_

X	$-\infty$	3	$+\infty$
$f'(x) = \frac{4}{9}x - \frac{4}{3}$	-	0	+

Sur] $-\infty$; 3], f est croissante donc f'(x) > 0 donc seule la réponse b est juste.

20. $\lim (f(x) - x) =$

a.

b.

c.

d. aucune des trois propositions proposées ci-dessus n'est correcte

CORRECTION

Réponse a.

 $\lim_{x \to \infty} f(x) = -\infty \text{ donc } \lim_{x \to \infty} (f(x) - x) = -\infty$

 $\int_{-1}^{-4} f(x) \, \mathrm{d}x$ 21.

a.

strictement positive

b. strictement négative

aucune des trois propositions proposées ci-dessus n'est correcte

CORRECTION

d.

Réponse c.

$$f'(x) = \frac{-4}{9}x + \frac{4}{3}$$
 donc $f(x) = \frac{-4}{9} \times \frac{x^2}{2} + \frac{4}{3}x + k$

$$f(0) = 4 \operatorname{donc} k = 4 \operatorname{donc} f(x) = \frac{-2}{9} x^2 + \frac{4}{3} x + 4$$

$$F(x) = \frac{-2}{9} \times \frac{x^3}{3} + \frac{4}{3} \times \frac{x^2}{2} + 4x$$

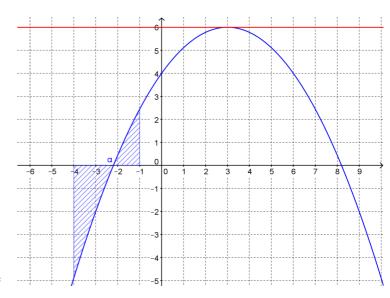
soit
$$F(x) = \frac{-2}{27} x^3 + \frac{2}{3} x^2 + 4 x$$

donc F(-1) =
$$\frac{2}{27} + \frac{2}{3} - 4 = \frac{-88}{27}$$

$$F(-4) = \frac{2}{27} \times 64 + \frac{2}{3} \times 16 - 4 \times 4 = -\frac{16}{27}$$

$$F(-4) - F(-1) = -\frac{16}{27} + \frac{88}{27} = \frac{72}{27} = \frac{8}{3}$$

 $\int_{-1}^{-4} f(x) dx$ n'est pas une aire car la fonction change de signe sur [-2;-1]



La suite (U_n) est : 22.

a. minorée non majorée

majorée non minorée b.

bornée c.

d.

aucune des trois propositions proposées ci-dessus n'est correcte

CORRECTION

Réponse b.

 $U_n = f(n)$ or pour tout x réel, $f(x) \le 6$ donc pour tout entier $n, f(n) \le 6$ donc U_n est majorée. $\lim_{x \to +\infty} f(x) = -\infty \text{ donc } \lim_{x \to +\infty} U_n = -\infty, U_n \text{ n'est pas minorée.}$

23. Pour a = 1, V_2 appartient à :

a. [0;2] b.[2;4]

d.

[4;6]

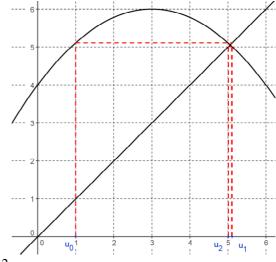
aucune des trois propositions proposées ci-dessus n'est correcte

Réponse c.

Pour a = 1, $V_0 = 1$, $V_1 = f(1)$ donc $V_1 \approx 5$ $V_2 = f(V_1)$ donc $V_2 \approx 5$

 $\int_{-\infty}^{-4} f(x) dx$ n'est pas une aire car la fonction change de signe sur[-2;-1]

CORRECTION



24. Pour a = -1, la suite (V_n) est :

a. constante

b.

d.

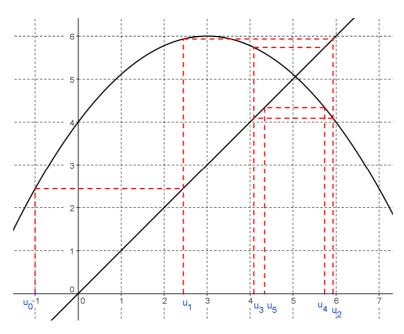
c. strictement croissante

aucune des trois propositions proposées ci-dessus n'est correcte

CORRECTION

strictement décroissante

Réponse d.



25. Pour a = -4, (V_n)

a. est convergente

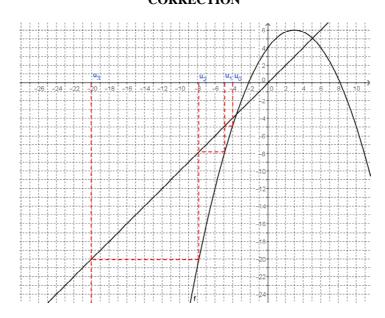
c. diverge vers $+\infty$

b. d. diverge vers $-\infty$

aucune des trois propositions proposées ci-dessus n'est correcte

CORRECTION

Réponse b.



LA TRIGONOMETRIE

Soit f la fonction définie sur \mathbb{R} par $f(x) = x \cdot \cos\left(\frac{x}{3}\right)$

26. *f* est :

a. paire

b. impaire

c. paire et impaire

d. aucune des trois propositions proposées ci-dessus n'est correcte

CORRECTION

Réponse b.

f est définie sur r donc pour tout réel, -x est réel.

La fonction cosinus est paire donc $f(-x) = -x \cdot \cos\left(-\frac{x}{3}\right) = -x \cdot \cos\left(\frac{x}{3}\right)$

f(-x) = -f(x) donc f est impaire

27. *f* est :

a. périodique de période 2π

b.

périodique de période 6 π

c. périodique de période $2 \pi / 3$

d.

aucune des trois propositions proposées ci-dessus n'est correcte

CORRECTION

Réponse d.

f est périodique de période $p \Leftrightarrow \text{pour tout } x \text{ réel}, f(x+p) = f(x)$

La fonction $x \to \cos\left(\frac{x}{3}\right)$ est périodique de période 6 π .

$$\cos\left(\frac{x+6\,\pi}{3}\right) = \cos\left(\frac{x}{3}+2\,\pi\right) = \cos\left(\frac{x}{3}\right)\,\operatorname{mais} f\left(x+6\,\pi\right) = \left(x+6\,\pi\right)\cos\left(\frac{x}{3}\right)\,\operatorname{donc} f\left(x+6\,\pi\right) \neq f\left(x\right).$$

28. Le nombre de solutions sur $[-2\pi; 2\pi]$ de l'équation f(x) = 0 est :

0.

b.

c. 2

a.

Réponse d.

$$f(x) = 0 \Leftrightarrow x = 0 \text{ ou } \cos\left(\frac{x}{3}\right) = 0$$

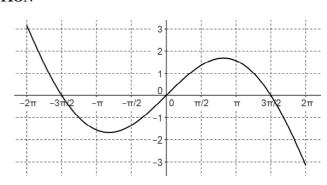
Si
$$x \in [-2\pi; 2\pi], \frac{x}{3} \in \left[-\frac{2\pi}{3}; \frac{2\pi}{3}\right]$$

$$\cos\left(\frac{x}{3}\right) = 0$$
 et $\frac{x}{3} \in \left[-\frac{\pi}{3}; \frac{2\pi}{3}\right] \Leftrightarrow \frac{x}{3} = \frac{\pi}{2}$ ou $\frac{x}{3} = -\frac{\pi}{2}$

$$\Leftrightarrow x = \frac{3\pi}{2}$$
 ou $x = -\frac{3\pi}{2}$

$$f(x) = 0 \Leftrightarrow x = 0 \text{ ou } \cos\left(\frac{x}{3}\right) = 0$$

3



29. Sur \mathbb{R} , la fonction dérivée f est définie par f'(x) =

 $a. -x \sin\left(\frac{x}{3}\right)$

b.

 $\cos\left(\frac{x}{3}\right) + x \cdot \sin\left(\frac{x}{3}\right)$

c. $\cos\left(\frac{x}{3}\right) - x\sin\left(\frac{x}{3}\right)$

d.

aucune des trois propositions proposées ci-dessus n'est correcte

CORRECTION

Réponse d.

$$f(x) = x \cdot \cos\left(\frac{x}{3}\right). \text{ Soit } \begin{cases} u(x) = x & u'(x) = 1\\ v(x) = \cos\left(\frac{x}{3}\right) & v'(x) = -\frac{1}{3}\sin\left(\frac{x}{3}\right) & \operatorname{donc} f'(x) = \cos\left(\frac{x}{3}\right) - \frac{x}{3}\sin\left(\frac{x}{3}\right) \end{cases}$$

30. Sur \mathbb{R} , la primitive F de f telle que F(0) = 0 est définie par F(x) = 0

a. $\frac{x^2}{2}\sin\left(\frac{x}{3}\right)$

b. $\frac{3x^2}{2}\sin\left(\frac{x}{3}\right)$

c. $9\cos\left(\frac{x}{3}\right) + 3x\sin\left(\frac{x}{3}\right)$

aucune des trois propositions proposées ci-dessus n'est correcte

CORRECTION

Réponse d.

Pour la primitive proposée en a. : F(0) = 0

Soit
$$\begin{cases} u(x) = \frac{x^2}{3} & u'(x) = \frac{2}{3}x \\ v(x) = \sin\left(\frac{x}{3}\right) & v'(x) = \frac{1}{3}\cos\left(\frac{x}{3}\right) & \text{donc F'}(x) = \frac{2}{3}x\sin\left(\frac{x}{3}\right) + \frac{x^2}{9} \times \frac{1}{3}\cos\left(\frac{x}{3}\right) & \text{donc F'}(x) \neq f(x) & \text{donc F n'est pas une primitive} \end{cases}$$

de f

Pour la primitive proposée en b. : la seule différence avec la a. est que la fonction est multipliée par 3 donc $F'(x) \neq f(x)$ donc F n'est pas une primitive de f.

Pour la primitive proposée en c.: F(0) = 9 donc ne convient pas, on pouvait néanmoins vérifier que :

$$\begin{cases} u(x) = 3x & u'(x) = 3\\ v(x) = \sin\left(\frac{x}{3}\right) & v'(x) = \frac{1}{3}\cos\left(\frac{x}{3}\right) & \text{donc F'}(x) = -9 \times \frac{1}{3}\sin\left(\frac{x}{3}\right) + 3\sin\left(\frac{x}{3}\right) + 3x \times \frac{1}{3}\cos\left(\frac{x}{3}\right) = x\cos\left(\frac{x}{3}\right) = f(x) \end{cases}$$

F est une primitive de f

31.
$$\lim_{x \to +\infty} f(x) =$$

$$c.$$
 + ∞

d.

aucune des trois propositions proposées ci-dessus n'est correcte

CORRECTION

Réponse d.

Si
$$x = 3 \pi + 6 n \pi$$
 alors $f(x) = (3 \pi + 6 n \pi) \cos(\pi + 2 k \pi) = -(3 \pi + 6 n \pi)$

$$\lim_{n \to +\infty} x = +\infty \text{ et } \lim_{n \to +\infty} f(x) = -\infty$$

Si
$$x = 6 \pi + 6 n \pi$$
 alors $f(x) = (6 \pi + 6 n \pi) \cos(2 \pi + 2 k \pi) = 6 \pi + 6 n \pi$

$$\lim_{n \to +\infty} x = +\infty \text{ et } \lim_{n \to +\infty} f(x) = +\infty$$

Il existe donc deux suites de nombres tells que pour l'une f(x) a pour limite $-\infty$ et pour l'autre $+\infty$ donc f n'admet pas de limite en $+\infty$.

32.
$$\lim_{x \to +\infty} f\left(\frac{1}{x}\right)$$

$$c$$
. $+\infty$

aucune des trois propositions proposées ci-dessus n'est correcte

CORRECTION

Réponse a.

$$f\left(\frac{1}{x}\right) = \frac{1}{x}\cos\left(\frac{1}{3x}\right).$$

$$\lim_{x \to +\infty} \frac{1}{x} = 0 \text{ donc } \lim_{x \to +\infty} \cos\left(\frac{1}{3x}\right) = \cos 0 = 1 \text{ donc } \lim_{x \to +\infty} f\left(\frac{1}{x}\right) = 0$$

33.
$$\int_{-\pi}^{\pi} f(x) \, \mathrm{d}x \, \mathrm{est} :$$

strictement négative

d.

aucune des trois propositions proposées ci-dessus n'est correcte

CORRECTION

Réponse a.

Une primitive de f est
$$F(x) = 9 \cos\left(\frac{x}{3}\right) + 3 x \sin\left(\frac{x}{3}\right)$$

$$F(\pi) = 9 \cos \frac{\pi}{3} + 3 \pi \sin \frac{\pi}{3}$$

$$F(-\pi) = 9\cos\frac{-\pi}{3} - 3\pi\sin\frac{-\pi}{3} \text{ or } \cos\frac{-\pi}{3} = \cos\frac{\pi}{3} \text{ et } \sin\frac{-\pi}{3} = -\sin\frac{\pi}{3}$$

$$F(-\pi) = 9 \cos \frac{\pi}{3} + 3 \pi \sin \frac{\pi}{3} \text{ donc } F(-\pi) = F(\pi) \text{ donc } \int_{-\pi}^{\pi} f(x) dx = 0$$