Pour tout réel k strictement positif, on désigne par f_k la fonction définie et dérivable sur l'ensemble des nombres réels $\mathbb R$ telle que :

$$f_k(x) = k x e^{-kx}$$
.

On note \mathbf{C}_k sa courbe représentative dans le plan muni d'un repère orthogonal $(0; \vec{i}, \vec{j})$.

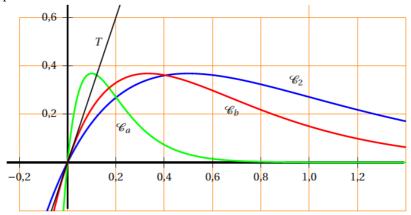
Partie A : Étude du cas k = 1

On considère donc la fonction f_1 définie sur \mathbb{R} par : $f_1(x) = x e^{-x}$...

- 1. Déterminer les limites de la fonction f_1 en $-\infty$ et en $+\infty$. En déduire que la courbe \mathbf{C}_1 admet une asymptote que l'on précisera.
- **2.** Étudier les variations de f_1 sur \mathbb{R} puis dresser son tableau de variation sur \mathbb{R} .
- **3.** Démontrer que la fonction g_1 définie et dérivable sur \mathbb{R} telle que : $g_1(x) = \neg (x+1) e^{-x}$ est une primitive de la fonction f_1 sur \mathbb{R} .
- **4.** Étudier le signe de $f_1(x)$ suivant les valeurs du nombre réel x.
- **5.** Calculer, en unité d'aire, l'aire de la partie du plan délimitée par la courbe \mathbf{C}_1 , l'axe des abscisses et les droites d'équation x = 0 et $x = \ln 10$.

Partie B: Propriétés graphiques

On a représenté sur le graphique ci-dessous les courbes \mathbf{C}_2 , \mathbf{C}_a et \mathbf{C}_b où a et b sont des réels strictement positifs fixés et T la tangente à \mathbf{C}_b au point O origine du repère.



- 1. Montrer que pour tout réel k strictement positif, les courbes \mathbf{C}_k passent par un même point.
- **2. a.** Montrer que pour tout réel k strictement positif et tout réel x on a $f'_k(x) = k(1 kx)$ e e^{-kx} .
- **b.** Justifier que, pour tout réel k strictement positif, f_k admet un maximum et calculer ce maximum.
- c. En observant le graphique ci-dessus, comparer a et 2. Expliquer la démarche.
- **d.** Écrire une équation de la tangente à \mathbf{C}_k au point O origine du repère.
- e. En déduire à l'aide du graphique une valeur approchée de b.

CORRECTION

Partie A : Étude du cas k = 1

1.
$$\lim_{x \to +\infty} x e^{-x} = 0$$
 donc $\lim_{x \to +\infty} f_1(x) = 0$, la courbe \mathbf{C}_1 admet pour asymptote en $+\infty$ la droite d'équation $y = 0$. lim $e^{-x} = +\infty$ donc $\lim_{x \to +\infty} f_1(x) = -\infty$.

2. f_1 est le produit de fonctions continues et dérivables sur \mathbb{R} donc f_1 est continue et dérivable sur \mathbb{R} .

$$\begin{cases} u(x) = x & u'(x) = 1 \\ v(x) = e^{-x} & v'(x) = -e^{-x} \end{cases} \text{ donc } f'_{1}(x) = e^{-x} - x e^{-x} = (1 - x) e^{-x}.$$

La fonction exponentielle est strictement positive sur \mathbb{R} donc $f'_1(x)$ a le même signe que 1-x

х	$-\infty$	1	$+\infty$
$f'_1(x)$	+	0	_
f 1	- &	e^{-1}	0

3.
$$\begin{cases} u(x) = -(x+1) & u'(x) = -1 \\ v(x) = e^{-x} & v'(x) = -e^{-x} \end{cases} \text{ donc } g'_1(x) = -e^{-x} + (x+1)e^{-x} = (-1+1+x)e^{-x} = x e^{-x} = f_1(x) \text{ donc } g_1 \text{ est une}$$

primitive de la fonction f_1 sur \mathbb{R} .

4. La fonction exponentielle est strictement positive sur \mathbb{R} donc $f_1(x)$ a le même signe que x

х	$-\infty$	0	$+\infty$
$f_1(x)$	_	0	+

5. La fonction f_1 est positive et continue sur [0; 10] donc l'aire de la partie du plan délimitée par la courbe \mathbf{C}_1 , l'axe des abscisses et les droites d'équation x = 0 et $x = \ln 10$ a pour mesure $\int_{-\infty}^{\ln 10} f_1(x) dx$.

 g_1 est une primitive de la fonction f_1 sur \mathbb{R} donc $\int_0^{\ln 10} f_1(x) dx = g_1 (\ln 10) - g_1 (0)$

$$\int_{0}^{\ln 10} f_1(x) \, dx = -(\ln 10 + 1) e^{-\ln 10} - [-1 e^{0}] = (-\ln 10 - 1) \, 0, 1 + 1$$

$$\int_{0}^{\ln 10} f_1(x) \, dx = 0, 9 - 0, 1 \ln 10.$$

Partie B: Propriétés graphiques 1. $f_k(x) = k x e^{-kx}$ donc pour tout k réel, $f_k(0) = 0$.

Pour tout réel k strictement positif, les courbes \mathbf{C}_k passent par O.

2. a.
$$\begin{cases} u(x) = k & u'(x) = k \\ v(x) = e^{-kx} & v'(x) = -k e^{-kx} \end{cases} \text{ donc } f'_{k}(x) = k e^{-kx} - k^{2} x e^{-kx} = k (1 - k x) e^{-kx}.$$

La fonction exponentielle est strictement positive sur \mathbb{R} donc, pour tout réel k strictement positif, $f'_k(x)$ a le même signe que 1 - k x.

 $k > 0, \ 1 - k \ x > 0 \Leftrightarrow x < \frac{1}{k} \text{ donc pour tout réel } k \text{ strictement positif, } f'_k(x) \ge 0 \text{ sur } \left[-\infty; \frac{1}{k} \right] \text{ et } f'_k(x) \le 0 \text{ sur } \left[\frac{1}{k}; +\infty \right[.$

Pour tout réel k strictement positif, f_k admet un maximum sur \mathbb{R} en $x = \frac{1}{k}$

Ce maximum est égal à $k \times \frac{1}{k} e^{-k \times \frac{1}{k}}$ soit e^{-1} .

- En observant le graphique, Ca admet un maximum en $\frac{1}{a}$ et $\frac{1}{a}$ est compris entre 0 et 0,2 donc $a > \frac{1}{0.2}$ soit a > 5 donc a > 2.
- $f'_k(0) = k (1 k \times 0) e^{-k \times 0} = k$ Une équation de la tangente à \mathbf{C}_k au point O origine du

repère est donc y = k x. Graphiquement le coefficient directeur de T est soit 3 or le coefficient directeur de la tangente à \mathbf{C}_b

en O est b donc une valeur approchée de b est 3.

