3°

DNB : diplôme national de brevet BLANC ALLEGE

TECHNOLOGIE

FONCTIONNEMENT D'UN GYROPODE : le « Segway i2 » (30 min - 22 points)

N° d'anonymat :

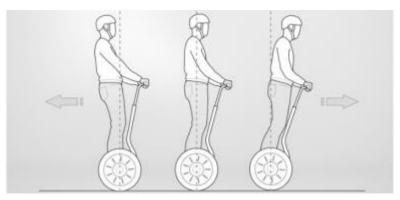
note: /22

SOIT/ 20

Ce sujet comporte 5 pages avec les caractéristiques (doc 1) et une vue éclatée du gyropode (doc 2). Avant de commencer, vérifiez que vous avez bien un sujet complet. Les candidats doivent composer, pour cette partie «Technologie», <u>directement</u> sur le sujet d'examen. En fin d'épreuve les candidats rendent le sujet complété ainsi que le document ressource. La calculatrice est autorisée.

TOUTE RÉPONSE NON RÉDIGÉE ET/OU ILLISIBLE SERA CONSIDÉRÉE FAUSSE

ANALYSE DU FONCTIONNEMENT D'UN GYROPODE : le « Segway i2 »


Sur les quais de Bordeaux, vous avez peut-être déjà croisé ce moyen de transport...

Le Segway i2 est un véhicule électrique, monoplace, auto-balancé, sûr et intuitif qui permet de se déplacer de façon rapide. Basé sur une technologie gyroscopique (calculateurs, accéléromètres et gyromètres), il se pilote avec les mouvements du corps : il suffit de se pencher un peu en avant pour avancer et vers l'arrière pour reculer.

Ce véhicule permet de se déplacer beaucoup plus rapidement qu'à pied, sans bruit et sans émission polluante. Il a été inventé par l'américain Dean Kamen. D'abord considéré comme véhicule de loisirs, le gyropode est désormais utilisé au sein de certaines entreprises, publiques et privées, et autres institutions : police, gardiennage, événementiel, aide médicale, etc.

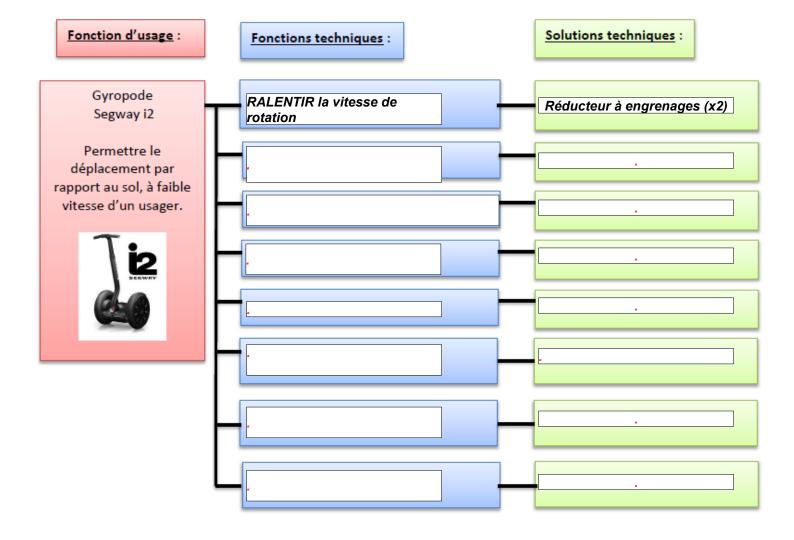
COMPOSITION ET PRINCIPE DE FONCTIONNEMENT

Le Segway i2 a la particularité de n'avoir que deux roues tournant autour du même axe. Il est constitué d'une plateforme munie de deux roues sur laquelle l'utilisateur se tient debout en se tenant au guidon. La conduite du gyropode se fait par inclinaison du corps, les virages à droite et à gauche sont quant à eux, commandés par l'inclinaison latérale de la colonne de direction.

LE SEGWAY i2 SE COMPOSE :

- de deux moteurs à énergie électrique et deux réducteurs à engrenages entraînant les roues (un réducteur par roue, <u>énergie mécanique</u>).
- d'un gyromètre (délivrant une information sur la vitesse d'angle de chute).
- d'un accéléromètre (délivrant une information sur l'angle d'inclinaison du châssis par rapport à la verticale).
- d'un **potentiomètre** lié à la colonne de direction délivrant une information sur l'inclinaison par rapport à la verticale (virage à droite ou à gauche).
- d'un calculateur (constitué de deux microprocesseurs) traitant, à partir des informations issues des capteurs, les consignes de commande.
- de deux batteries Lithium-ion fournissant <u>l'énergie électrique</u> aux divers composants.
- d'un afficheur LCD à écran digital permettant d'obtenir la vitesse en temps réel
- 1. Complétez le diagramme suivant : (2 points)

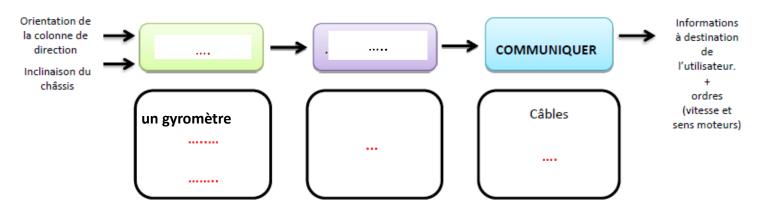
2. Quels sont les <u>3 capteurs</u> qui constituent la partie « ACQUÉRIR les informations » de cet objet technique ? (1,5 points)


3 ; A partir du document ressource page 4/4, complétez les parties manquantes du cahier des charges. (2 points)

EXTRAIT DU CAHIER DES CHARGES DU SEGWAY i2

REPERE	FONCTION	CRITERE	NIVEAU / FLEXIBILITE
FP	Permettre le déplacement par rapport au sol, à faible vitesse d'un usager	 Vitesse maxi Accélération Distance d'arrêt max Poids de la personne Autonomie 	- 1,5 m/s² Max - 3,9 m à 20Km/h ± 20 cm - 117 kg - 35 à 40 Km
FC1	Donner au conducteur une sensation de stabilité	 Temps de réponse Dépassement d'inclinaison Basculement 	- 1 Sec Max - < 41 % - Aucun
FC2	Rester insensible aux perturbations provenant de la route et franchir les obstacles présents sur le sol urbain.	 Hauteur de marche de trottoir franchissable à 5Km /h Perturbations dues à la route, nature du sol (pavés, franchissement d'un trottoir,) 	- 5 cm Max - Plage de fréquences de 0 à 300 Hz
FC3	Être peu encombrant, facilement transportable et s'adapter à la taille de l'utilisateur	- Largeur Encombrement - Garde au sol - Diamètre des roues - IMasse à vide	- 63 cm - 48 cm - 63 x 63 cm - 8.5 cm - 14 pouces
FC4	Se recharger simplement et rapidement en énergie électrique	- Tension d'alimentation secteur	- 220 V - 6 à 8 h Max
FC5	Respecter les normes	 Prise électrique standardisée Engin soumis au code de la route 	- Normes NF C 15-100 - R412-34-43
FC6	Résister aux conditions extérieures	- Humidité, poussières	- Normes IEC 529

- 4. Quelle est l'autonomie kilométrique du Segway i2 ? (1 point)
- ••
- 5. Cette autonomie peut être réduite. Pourquoi ? Par quoi ? Avancez 2 raisons valables. (1 point)
- ••
- 6. Quelle est la <u>tension d'alimentation</u> (Volts) et la <u>puissance maximale</u> (Watts) des deux moteurs sur le <u>Segway i2</u> ? (2 points)
- ..
- ••
- 8. Complétez le diagramme d'analyse fonctionnelle <u>à partir</u> des propositions suivantes. <u>Une seule possibilité</u> par rectangle : La fonction technique est TOUJOURS définie par un verbe à l'infinitif. (7 points. *1 point par ligne correcte sinon 0*)
- PERMETTRE une bonne adhérence
- COMMUNIQUER la vitesse à l'utilisateur
- PERMETTRE de se diriger
- Guidon + colonne de direction


- Moteur électrique (x2)
- Batteries Lithium (x2)
- STOCKER l'énergie électrique
- Afficheur LCD
- Pneumatiques (x 2)
- Châssis
- CONVERTIR l'énergie électrique en énergie mécanique ACCUEILLIR et SUPPORTER les pieds de l'utilisateur
- ASSURER la liaison entre les composants Plateforme



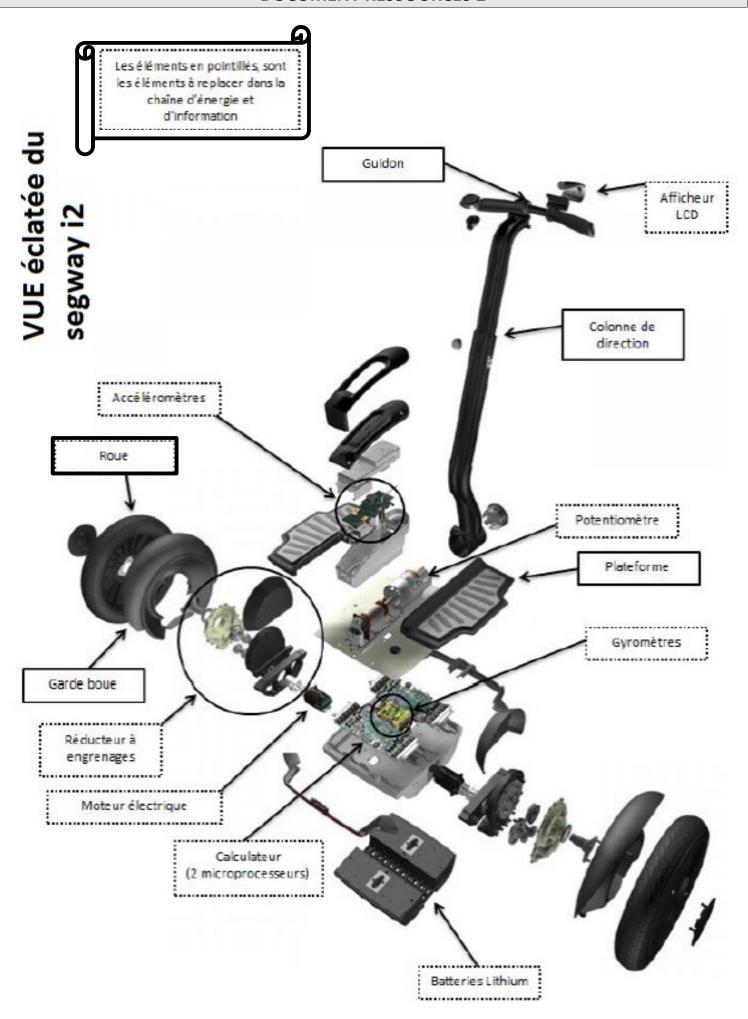
9 Complétez les chaînes d'énergie et d'information du gyropode Segway i2.

Utiliser la ressource page 5/5

CHAINE D'INFORMATIONS: Six réponses sont attendues (3 points)

DOCUMENT RESSOURCES 1

caractéristiques techniques


	SEGWAY i2	SEGWAY x2
DIMENSIONS		
Largeur	63 cm	84 cm
Profondeur	48 cm	53 cm
Encombrement	63 x 63 cm	67 x 84 cm
Garde au sol	8,5 cm	11,2 cm
Rayon de braquage	0	0
MASSE		
Masse à vide	47,7 kg	54,4 kg
Masse totale autorisée en charge	117 kg	117kg
MOTORISATION		
Tension	2 moteurs	2 moteurs
d'alimentation	36 Volts	48 Volts
Energie	électrique	électrique
Puissance moteur max	3 000 Watts	3 600 Watts
Niveau sonore	< 20 dB	< 21 dB
PERFORMANCES		
Vitesse maxi	20 km/h	20 km/h
0 à 20 km/h	2s 900ms	5s 400ms
Distance max de freinage	3,9 mètres	4,3 mètres
Rotation sur 360°	< 2 secondes	< 2 secondes
Dénivelé max	41 %	38 %
BATTERIES		
Autonomie	35 à 40 km	14 à 20 km
Batteries	Lithium Ion	Lithium Phosphate

T° (stockage en recharge)	10°/40°C	10°/40°C
T° (fonctionnement)	-10°/50°C	-10°/50°C
Puissance batterie	73,6V / 5,2 Ah / 400 W	73,6V / 5,2 Ah / 400 W
Temps de charge	6 à 8 heures	6 à 8 heures
Durée de vie batteries	> 1 000 cycles	> 1 000 cycles de
Duree de vie batteries	de charge	charge
Emission CO2	0 g/km	0g/km
PNEUMATIQUES		
Roues (diamètre)	14 pouces	10 pouces
Pneus	100/65-14	AT21x7-10
Pression	1,03 bar	0,28 bar

Gamme produits Segway

DOCUMENT RESSOURCES 2

